Parallel Neural Networks for Speech Recognition

نویسنده

  • Byoung Jik Lee
چکیده

This paper presents the PNNC (Parallel Neural Networks by Conndence) and PNNS (Parallel Neural Networks by Success/Failure), which generate and integrate parallel neural networks to achieve high performance on the test problem of letter recognition from string of phonemes. Our approach provides a way to create subproblems for a complex problem by partitioning the data, thus each neural network adapts to each subproblem more eeciently. Each neural network is iteratively trained on the training data which the previous neural networks could not guarantee or produce proper results. Each network works by ltering out unsatisfactory instances to pass to the next sub network to handle. This approach provides a way, by exploring diier-ent search spaces, to handle the local minima problem without complex computations via the use of neural networks working in parallel. Experimental results show that our approach achieves improvement over the general multi-layered neural network on the speech recognition problem which converts strings of phonemes to strings of letters taken from the 934 most commonly used English words. Particularly, the fact that error on vowel recognition is reduced signiicantly by the subsequent neural network indicates the usefulness and effectiveness of our approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

شبکه عصبی پیچشی با پنجره‌های قابل تطبیق برای بازشناسی گفتار

Although, speech recognition systems are widely used and their accuracies are continuously increased, there is a considerable performance gap between their accuracies and human recognition ability. This is partially due to high speaker variations in speech signal. Deep neural networks are among the best tools for acoustic modeling. Recently, using hybrid deep neural network and hidden Markov mo...

متن کامل

Persian Phone Recognition Using Acoustic Landmarks and Neural Network-based variability compensation methods

Speech recognition is a subfield of artificial intelligence that develops technologies to convert speech utterance into transcription. So far, various methods such as hidden Markov models and artificial neural networks have been used to develop speech recognition systems. In most of these systems, the speech signal frames are processed uniformly, while the information is not evenly distributed ...

متن کامل

Speech Emotion Recognition Using Scalogram Based Deep Structure

Speech Emotion Recognition (SER) is an important part of speech-based Human-Computer Interface (HCI) applications. Previous SER methods rely on the extraction of features and training an appropriate classifier. However, most of those features can be affected by emotionally irrelevant factors such as gender, speaking styles and environment. Here, an SER method has been proposed based on a concat...

متن کامل

An Information-Theoretic Discussion of Convolutional Bottleneck Features for Robust Speech Recognition

Convolutional Neural Networks (CNNs) have been shown their performance in speech recognition systems for extracting features, and also acoustic modeling. In addition, CNNs have been used for robust speech recognition and competitive results have been reported. Convolutive Bottleneck Network (CBN) is a kind of CNNs which has a bottleneck layer among its fully connected layers. The bottleneck fea...

متن کامل

Parallel Training of Neural Networks for Speech Recognition

The feed-forward multi-layer neural networks have significant importance in speech recognition. A new parallel-training tool TNet was designed and optimized for multiprocessor computers. The training acceleration rates are reported on a phoneme-state classification task.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007